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Abstract
Using perturbative methods, we analyse a nonlinear generalization of
Schrodinger’s equation that had previously been obtained through information-
theoretic arguments. We obtain analytical expressions for the leading
correction, in terms of the nonlinearity scale, to the energy eigenvalues of
the linear Schrodinger equation in the presence of an external potential and
observe some generic features. In one space dimension these are (i) for
nodeless ground states, the energy shifts are subleading in the nonlinearity
parameter compared to the shifts for the excited states; (ii) the shifts for the
excited states are due predominantly to contribution from the nodes of the
unperturbed wavefunctions, and (iii) the energy shifts for excited states are
positive for small values of a regulating parameter and negative at large values,
vanishing at a universal critical value that is not manifest in the equation.
Some of these features hold true for higher dimensional problems. We also
study two exactly solved nonlinear Schrodinger equations so as to contrast our
observations. Finally, we comment on the possible significance of our results
if the nonlinearity is physically realized.

PACS numbers: 89.90.+n, 05.90.+m, 03.65.−w

1. Introduction

Various nonlinear extensions of Schrodinger’s equation have been proposed [1] over the years
as possible generalizations of the linear evolution of the original theory. Although several
low-energy experiments have placed very small upper bounds [2] on the proposed extensions,
there is still the possibility that quantum mechanics might have to be modified at high energies
or short distances [3] where the structure of spacetime is expected to be different [4].

However, in this paper we remain within the non-relativistic realm so as to explore in
more detail the properties of one particular nonlinear extension that was motivated in [5] by
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maximum uncertainty arguments [6, 7] similar to those used in statistical mechanics [8]. In
higher than one space dimension the equation of [5] was not rotationally invariant, motivating
a suggestive link between spacetime symmetries and quantum linearity. Some implications of
such a connection for phenomenology were discussed heuristically in [5, 3].

In [9], some exact nonperturbative solutions of the above-mentioned equation were
obtained, displaying intriguing and novel features that are probably related to the unusual
structure of that equation. Indeed, it was hinted in [9] that the equation might also be
interesting as an effective equation in other domains of physics, such as nonlinear optics [10],
rather than its original intention in [9].

Here we investigate how the nonlinearity of that equation perturbs the energy spectrum of
the usual linear Schrodinger equation. Since simple estimates already indicate that the size of
the nonlinearity scale must be tiny for it to be consistent with phenomenology [5], we shall use
standard first-order perturbation theory for our study. Our primary aim here is not to confront
empirical data but to uncover further properties of the nonlinear equation. As we shall see,
even at the perturbative level the equation of [5] has a rather surprising character. In particular,
we find a universal critical point of the theory that is not at all obvious from the equations of
motion.

In the following section, we outline our perturbative scheme and then illustrate it with
some numerical results in section 3. A general analytical investigation is next conducted in
section 4 to extract and explain the features mentioned in the abstract. In section 5 we contrast
the perturbative properties of the nonlinear equation with those of two other exactly solved
nonlinear Schrodinger equations. The concluding section summarizes the main lessons and
discusses some implications. The appendices contain additional derivations.

2. Perturbative framework

Let us focus first on the nonlinear equation for a single particle in one space dimension that
was derived in [5],

ih̄
∂�

∂t
= − h̄2

2m

∂2�

∂x2
+ V (x)� + F(p)�, (1)

with p(x, t) = ��(x, t)�(x, t) being the conserved probability density and

F(p) ≡ Qnl − Q, (2)

where

Qnl = h̄2

4mL2η4

[
ln

p

(1 − η)p + ηp+
+ 1 − (1 − η)p

(1 − η)p + ηp+
− ηp−

(1 − η)p− + ηp

]
, (3)

is a regularized nonlinear ‘quantum potential’. The parameter η takes values 0 < η < 1, its
crucial role being to regulate potential singularities where p(x) vanishes. We have used the
notation

p±(x) = p(x ± ηL). (4)

Note that if � is any solution of the equation, then so is λ� for an arbitrary constant λ, so
we may re-normalize states freely. The nonlinearity is characterized by the length scale L, in
terms of which one may perform a formal expansion of (3),

Qnl → Q ≡ − h̄2

2m

1√
p

∂2√p

∂x2
, (5)

with a remainder of O(L).
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Let � = e−iEt/h̄φ(x) be the energy eigenstates of the usual linear Schrodinger equation
for a given external potential V (x). Assuming that the spectrum deforms continuously as the
nonlinearity F is turned on, then to leading order the corrected energies are given by first-order
perturbation theory

Eexact = E + δE, (6)

δE =
∫ ∞

−∞
dx φ�F (φ)φ. (7)

Note that F is evaluated using the unperturbed wavefunctions and so from now on p will refer
to φ�(x)φ(x).

We may trust first-order perturbation theory when the nonlinearity is small. The relevant
dimensionless expansion parameter is L/a, where a is a typical scale in the linear theory,
such as the de Broglie wavelength. As equations (3), (4) indicate, expression (7) is actually
a complicated function of L/a from which the leading behaviour must be extracted. We
will discard subleading terms from (7) as they will be of the same order as second-order
perturbation theory corrections, which we do not study here.

For the problems we will study, the unperturbed wavefunctions φ(x) are parity eigenstates
so that p(x) = p(−x). Changing variables x → −x in (7) and using the parity invariance of
p shows that

δE(L) = δE(−L). (8)

That is, when we allow the parameter L to take negative values, then although equation (1) is
not invariant under L → −L, yet the first-order energy shifts are. Therefore, if δE(L) were
an analytic function of L, one would have concluded that

δE(L) ∼ O(L2) + O(L4) + · · · , (9)

as the O(L0) term vanishes by construction, see (5). In reality however, δE(L) is generically
non-analytic! To see this, consider the naive series expansion of the integrand in (7). It results
in the formal expression

δE(L) ∝ L2η2
∫ ∞

∞

dx

p3
[6(2 − 3η)2(p′)4 − 12(3 − 8η + 6η2)p(p′)2p′′

+ 4p2p′p′′′ + p2(3(p′′)2 − 2pp′′′′)], (10)

which is ill defined because of the singularities that occur where p(x) vanishes, that is where
the unperturbed wavefunction has nodes. Thus one may conclude δE(L) ∼ O(L2) only for
nodeless states, which are typically only the ground states of a system.

Since excited states of the unperturbed theory have nodes, we cannot use (10) for them.
In the following section, we perform a numerical investigation of expression (7) and then
return in section 4 to a more general analytical investigation that explains the various observed
results, such as δE(L) ∼ O(|L|) for states with nodes.

3. Numerical investigation

The purpose of the numerical study is two-fold. Firstly, it helps us uncover some interesting
features of the complicated nonlinearity (2) and so guides us in the later, more general,
analytical investigations. Secondly, it will provide us with important checks on the analytical
derivations of section 4 and in particular answer the question of how small, numerically, the
perturbative parameter L/a has to be in the analytical expressions.
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As convergence near the end-points η = 0, 1 is slow, we integrate (7) numerically at the
symmetric point η = 1/2, deferring a discussion of other η values to section 4. Although
phenomenologically one expects L/a to be tiny [5], we study much larger values ∼10−3 for
computational efficiency. However, we do demand δE/E ∼ 10−2 or smaller so as to be safely
in the perturbative regime. For each V (x), we obtain the leading dependence of δE on L/a

and the principal quantum number. The numerical results are then parametrized using a best
fit to simple analytical power law expressions.

The numerical work was performed with Mathematica [11], and the quoted numbers are
accurate to about the last digit.

In the numerical work, we have set L = 1 to define the reference units. Thus 1/a factors
quoted below actually correspond to the dimensionless quantity L/a. We have checked that the
numerical results are invariant under L → −L as required by the parity invariance argument
of section 2.

3.1. Infinite well

The infinite well with walls at x = 0 and x = a gives

φn(x) =
√

2

a
sin

nπx

a
(11)

and unperturbed energies

E0
n = h̄2π2n2

2ma2
. (12)

In the presence of the nonlinearity, the energies shift and are given to leading order by

En = E0
n + δEn. (13)

It is convenient to define dimensionless quantities by dividing the above equation by
h̄2π2/2ma2:

Ẽn = n2 + δẼn. (14)

For various fixed values of n, 1 � n � 50, the energy shifts were evaluated numerically
for 1000 < a < 10 000. Figure 1 shows a log–log plot for the n = 1 case from which one
deduces δẼ = −0.99/a. The other n values give similar plots, all indicating δẼ ∝ −1/a.

On the other hand, for various fixed a, an evaluation over the range 5 � n � 50 shows
δẼ ∝ −n3. Re-inserting ‘L’ we find, averaging the best fit for various a values

δẼn = −1.03
n3|L|

a
+ O(L/a)2. (15)

In appendix A, we will explain this result analytically.
Note that correction (15) grows with n, and so at some large value of n it is no longer

small compared to the unperturbed value. This simply means that one must then go beyond
first-order perturbation theory. We discuss the possibilities in the concluding section.

3.2. Simple harmonic oscillator (SHO)

The potential is now V (x) = kx2/2 giving the usual unperturbed wavefunctions [12]

φn(x) = 1√
n!2n

(πa2)−1/4Hn

(x

a

)
exp

(
− x2

2a2

)
(16)
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Figure 1. Log–log plot of |δẼ| versus a for the ground state n = 1 of the infinite well. The line
has slope 0.999 85(2) and intercept 0.0448(1). In this and the other figures the ‘logs’ are natural
logarithms.

and unperturbed energies

E0
n =

(
n +

1

2

)
h̄

√
k

m
. (17)

The linear length scale ‘a’ in this problem is the de Broglie length h̄1/2/(km)1/4. We
investigated the dimensionless energies shifts

δẼn ≡ δE

h̄

√
m

k
(18)

numerically over the range, 0 � n � 18 and 100 < a < 1000.
For the ground state, n = 0, we find δẼ ∝ −1/a2, which is a faster drop than seen for the

infinite well. However, excited states have a similar behaviour in ‘a’ to those of the infinite
well, with δẼ ∝ −1/a for any fixed n. The n dependence for fixed a is more complicated as
indicated in figure 2. In summary, we find for the excited states, n � 1,

δẼn = −0.26
n1.41|L|

a
+ O(L/a)2. (19)

It must be emphasized that result (19) is a best fit to an assumed power law over the
limited range investigated. However, independent analytical estimates in appendix B do give
a similar result over the same range.

3.3. Hydrogen atom

We use the standard unperturbed wavefunctions as given, for example, in [12]

ψnlm(r, θ, φ) =
√(

2

na

)3
(n − l − 1)!

2n[(n + l)!]
ρl e−ρ/2L2l+1

n−l−1(ρ)Y l
m(θ, φ), (20)
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Figure 2. Log–log plot of
∣∣δẼ∣∣ versus n for a = 1000 of the SHO. The line has slope 1.413(8)

and intercept −8.25(2).

with ρ = 2r/na, and the corresponding unperturbed energies

E0
n = − h̄2

2Ma2n2
, (21)

where M is the electron mass.
The three-dimensional version of equation (2) is [5]

F(p) ≡ Q3 − Q, (22)

Q3 =
3∑

i=1

h̄2

4ML2η4

[
ln

p

(1 − η)p + ηp+i

+ 1 − (1 − η)p

(1 − η)p + ηp+i

− ηp−i

(1 − η)p−i + ηp

]
,

(23)

Q = − h̄2

8M

[
2∂i∂ip

p
− ∂ip∂ip

p2

]
,

with i = 1, 2, 3 and p±1(x) = p(x1 ± ηL, x2, x3) and so on. The Bohr radius defines
a = h̄2/Me2 for this problem and the dimensionless energy shifts are

δẼn ≡ δE

h̄2 (2Ma2). (24)

Note that the nonlinearity breaks rotational invariance in the above expression (22) which
is defined in the preferred Cartesian basis as discussed in [5]. Thus the wavefunctions (20)
are first converted to the Cartesian basis for use in (22) but the final numerical integration was
performed after converting back to spherical coordinates. We used the built-in Monte Carlo
subroutine in Mathematica [11] for this case and investigated only a very limited range of
parameter values due to the time-intensive nature of the three-dimensional problem.

Although the pure Coulombic hydrogen atom states have a degenerate spectrum, we still
use the simple non-degenerate first-order perturbation theory formula for all states as our
primary objective is to observe the effects of the nonlinearity on energy shifts. (Note also that
the energy shifts due to the nonlinearity are expected to be much less than other effects, such
as relativity, that in reality lift the degeneracy of the unperturbed states.)
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Figure 3. Plot of |δE/E0| versus n � 2 for l = 0 states of hydrogen atom. Curves for different
values for a are shown.

Consider first the zero angular momentum, l = 0 states. For the ground state, n = 1
we found δẼ ∝ −1/a2 while for the n = 2, 3 excited states we have δẼ ∝ −1/a. This
dependence on a is similar to that of the SHO. The dependence of the energy shifts on the
principal quantum number however appears to be much more complicated than the earlier
one-dimensional problems. Figure 3 plots |δE/E0| for n � 2.

For higher angular momentum states, there is a clear difference between the n = l − 1
cases and n �= l − 1. For the former case, we find δẼ ∝ −1/a2, a behaviour typical of
nodeless states, while for the latter case we find the expected δẼ ∝ −1/a trend. We explain
the distinction between the two cases in section 4.

As for the dependence on the magnetic quantum number m, we do have the expected
invariance under m → −m, but also find a mild dependence of the energy shift for different
m corresponding to the same n, l. For example, on a log–log plot of |δẼ| versus a for the
n = 3, l = 2,m = 1, 2 states of the hydrogen atom, the m = 2 line has slope −1.979(7) and
intercept −10.14(3) while the m = 1 line has slope −1.986(4) and intercept −9.61(2).

4. General analytical investigation

Unless otherwise stated, in this section we discuss the nonlinear equation in the presence of a
general smooth external potential V (x) which for convenience we choose to be parity even,
V (x) = V (−x), so that the unperturbed states are parity eigenstates. Since most studied
potentials are parity even, that restriction is not unreasonable. However, we emphasize that
the key features of our result, such as equation (44) below, follow from the structure of the
nonlinearity (2): for example, without using parity eigenstates below, one still obtains similar
results if instead of (2) one uses the L → −L symmetrized version [5] of the nonlinearity.

4.1. Nodeless states

If p(x) does not vanish in the region of integration, such as the ground state of the SHO, one
may use (10) to conclude that δE ∼ O(L2). Explicitly, we have for the n = 0 SHO state

δẼ = η2(1 − η)(1 − 3η)

4

(
L

a

)2

+ O(L4), (25)
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which for η = 1/2 is in excellent agreement with the leading result extracted numerically
in subsection 3.2, δẼ = −0.0156L2/a2. Equation (25) indicates a number of interesting
features. It vanishes both as η → 0, which is the formal linear limit of (1) and also as
L/a → 0 which is the physical linear limit. δẼ also vanishes at η = 1/3 and η = 1, but it is
apparent from (10) that unlike the η → 0 case the other two critical values are dependent on
V (x).

We also note that δẼ in (25) is positive for η < 1/3 and negative for larger values.
Such crossing behaviour will also be seen below for excited states but, more remarkably, at a
universal (that is, V (x) independent) value of η.

The conclusion δE ∼ O(L)2 that we have drawn for the nodeless states from (10) is
for smooth one-dimensional potentials. For higher dimensions, the conclusion is still true
because of the form of (22); but now one may encounter some nodes that are integrable, as in
the hydrogen atom case to be discussed in subsection 4.3 below.

4.2. Excited states in one dimension

When the unperturbed wavefunction φ(x) vanishes at a number of nodes the formal L-
expansion of the quantum potential Qnl as in (10) breaks down and so one has to proceed
differently. Now, from the definition of δE in equation (7), we have

δE =
∫

pQnl −
∫

pQ. (26)

The second integral in (26) is independent of L, and it will cancel the L-independent piece of the
first integral. So let us focus on the first integral in (26). Suppose first that p(x) has exactly one
node at x = x1. Since there are two widely separated length scales, |L| 	 a, we may divide the
integration region in the first term of (26) into three parts,

(−∞, x1− α|L|
2

)
,
[
x1− α|L|

2 , x1+ α|L|
2

]
and

(
x1 + α|L|

2 ,∞)
, where α is a positive constant to be fixed later. The absolute value |L|

used here allows negative L values in the following discussion.
In the region including the node, one may perform the Taylor expansion φ(x) ≈ C1(x−x1)

and so p(x) ≈ C2
1(x − x1)

2. Thus

δEnode ≈ h̄2C2
1

4mL2η4

∫ α|L|
2

−α|L|
2

dx x2

[
ln

x2

(1 − η)x2 + η(x + ηL)2
+ 1

− (1 − η)x2

(1 − η)x2 + η(x + ηL)2
− η(x − ηL)2

(1 − η)(x − ηL)2 + ηx2

]
(27)

= h̄2C2
1 |L|

4mη4

∫ α/2

−α/2
dy y2

[
ln

y2

(1 − η)y2 + η(y + η)2
+ 1

− (1 − η)y2

(1 − η)y2 + η(y + η)2
− η(y − η)2

(1 − η)(y − η)2 + ηy2

]
+ O(L2). (28)

Note that the leading |L|3 part of integral (27) comes already from the
∫

dx x2 piece after the
scaling x = |L|y, so subleading terms in the Taylor expansion of pn(x) ≈ C2

np(x−xp)2+O(x3)

contribute only at O(L2) to δE.
For φ(x) having nodes at x = x1, x2, . . . , xN , we may repeat the above procedure in the

neighbourhood of each node as long as the nodes are widely separated. Then

δEnodes ≈ h̄2|L|
4mη4

J (η, α)

N∑
p=1

C2
np + O(L2), (29)



Universality in an information-theoretic motivated nonlinear Schrodinger equation 5629

with

J (η, α) ≡
∫ α

2

−α
2

dy y2

[
ln

y2

(1 − η)y2 + η(y + η)2
+ 1

− (1 − η)y2

(1 − η)y2 + η(y + η)2
− η(y − η)2

(1 − η)(y − η)2 + ηy2

]
. (30)

In (29), n refers to the quantum number(s) of the unperturbed state and p labels a node.
To fix the value of α, we have to look at the nodeless regions of the first integral in (26).

The terms p(x ± ηL) may be safely expanded about L = 0 to give for the integrand a series
∼L0 + L2 + · · ·; there is no L1 term in the series because of parity invariance (8). But since
the integration limits are dependent on α|L|, we have to be sure that the integral receives no
enhancement of 1/|L| factors from them and therefore we need to choose

α = Ca

|L| , (31)

where C is a positive constant, so as to make the integration limits L independent. Then, since
δE = 0 for L = 0, the O(L0) piece from the nodeless regions of the first integral in (26) must
cancel the second integral in (26), leaving a net contribution of order L2.

Returning now to (29) and using (31), we deduce that for small values of our perturbative
parameter |L|/a we need to expand J (η, α) for α large. We find

J (η, α → ∞) → −2

3

√
1 − ηη9/2(4η − 1)π + O

(
1

α
= |L|

Ca

)
. (32)

Define the α-independent piece of (32) as

J (η) ≡ −2

3

√
1 − ηη9/2(4η − 1)π, (33)

so that one may finally write for (26)

δE = h̄2|L|
4mη4

J (η)

N∑
p=1

C2
np + O(L2). (34)

A remarkable aspect of formula (34) is that the specific dependence on the external
potential V (x) has been factorized: it is only in the Cnp coefficients. Since J (η) vanishes at
η = ηc = 1/4, it means that the leading energy shifts vanish at a universal, V (x) independent,
critical point!

Given the intricate steps in above derivation, it is useful to perform some checks. From
our numerical investigations, we found that for the excited states of the infinite well, δE = 0
for a value of η between (0.24, 0.25), in close agreement with the above prediction. We also
confirmed numerically that the energy shifts for the excited states of the SHO also vanish at
essentially (limited by our numerical precision) the same ηc, 0.24−0.25 as that for the infinite
well. We remark that since the infinite well may be thought of as the γ → ∞ limit of the
potential V (x) = |x/a|γ , so we are essentially checking (34) at two limiting ends of a class
of potentials.

More complete checks of (34) involve comparing it with the n-dependent expressions
for the energy shifts found numerically in the previous section. These checks are done in
appendices, again showing good agreement.

Let us summarize some of the main features of (34). Firstly, the expression clearly shows
the non-analytic O(|L|) trend confirmed numerically in the previous section. It also shows
that the energy shift will be negative (positive) for large (small) η values.
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4.3. Higher dimensions

For higher dimensions an explicit analysis similar to the preceding subsection is awkward
because the nonlinearity is expressed in the preferred Cartesian basis with broken rotational
symmetry whereas most potentials, such as the hydrogen atom, have a symmetry and so
are better expressed in other coordinate systems. Nevertheless, we can make some general
statements.

For nodeless states, we have the analogue of (10) by expanding (23) and so get
δE ∼ O(L2).

For excited states, the presence of nodes leads to singularities as before in the naive Taylor
expansion. Arguments similar to above then imply that δE will be enhanced to O(|L|) as each
coordinate is treated separately in (23). Thus we expect again the energy shifts to be positive
for small η and negative for larger η, vanishing at some intermediate value. The numerical
results of subsection 3.3 for the angular momentum states l �= n − 1 are in agreement with
these general expectations, although we have not checked the expected variation with η.

A very interesting situation arises for the l = n− 1 states of the hydrogen atom for which
the radial wavefunction vanishes only at the origin

ψn,l=n−1 ∼ rn−1Ylm(θ, φ). (35)

Although the corresponding probability density p(�r) has a node at the origin, the radial integral
in the O(L2) contribution δE ∼ ∫

d�
∫ ∞

0 dr p(r)(· · ·), the three-dimensional analogue
of (10), is nonsingular, as we see by power counting, if 2(n − 1) + 3 > 4, that is, for
n � 2. This explains the ‘anomalous’, δE ∼ L2, behaviour of such excited states observed in
subsection 3.3.

5. Exactly solved models

In using perturbation theory we have assumed, as is usually done in physics, that the quantity
of interest will deform continuously as the perturbation is turned on. Here we briefly discuss
two nonlinear Schrodinger equations for which exact solutions are available so that one can
test perturbation theory. In addition, the models will be used to further highlight some of
the distinctive features we have observed for the nonlinear equation (1). For simplicity, we
consider only the one-dimensional case here.

5.1. Gross-Pitaevskii (GP) equation

This classic [10] equation is used as an effective theory in studies of condensed matter. It
corresponds to using F(p(x, t)) = gp(x, t) in (1). To leading order, one has

δE = g

∫
p2 dx, (36)

so that energy shifts are always positive or negative depending on the sign of the coupling g.
Explicitly for the infinite well, one has

δEn = 3g

2a
, (37)

a constant shift independent of n, as obtained earlier in [13] which also showed that this
perturbative result was the appropriate limit of the exact solution of this equation with the
infinite well potential.



Universality in an information-theoretic motivated nonlinear Schrodinger equation 5631

For the SHO potential, we are not aware of any exact solutions for the GP equation but
(36) gives the leading order correction

δE ≈ g

a
√

2π
n−0.31, (38)

for n � 1, showing that it decreases with n. We obtained (38) through a numerical best-fit to
an assumed power law.

The constant or decreasing dependence of the energy shifts on n, respectively for the above
two potentials in the GP equation, should be contrasted with the results for the information-
theoretic nonlinearity (2) which showed an increasing dependence on n. As we saw in
section 4 that increasing dependence on n was due to the prominent role played by nodes
which by contrast are completely irrelevant in (36).

5.2. A pseudo-nonlinear model

Starting from the usual linear Schrodinger equation

ih̄
∂�

∂t
= − h̄2

2m

∂2�

∂x2
+ V (x)�, (39)

we can re-arrange the kinetic term by an amount ε to obtain

ih̄
∂�

∂t
= −(1 − ε)

h̄2

2m

∂2�

∂x2
+ V (x)� − ε

�

h̄2

2m

(
∂2�

∂x2

)
�, (40)

which corresponds to an equivalent nonlinear Schrodinger equation with mass m/(1 − ε) in
the linear part and a perturbed nonlinearity

F(p) ≡ − ε

�

h̄2

2m

(
∂2�

∂x2

)
. (41)

Thus in this case, the exact and unperturbed solutions just correspond to a mass
renormalization. For stationary states, first-order perturbation theory gives

δE = −εh̄2

2m

∫
dx

p√
p

∂2√p

∂x2
(42)

= εh̄2

2m

∫
dx

(
∂
√

p

∂x

)2

, (43)

so that again the energy shifts are simply correlated in sign with the sign of ε.
As the wavefunctions for the linear Schrodinger equation with an infinite well potential

are independent of the mass and so also of ε, the first-order correction using (43) gives an
exactly ε contribution in this case. When that is added to the unperturbed energies which are
proportional to 1 − ε, one gets the full answer, that is, first-order perturbation theory for this
problem is all there is.

For the SHO and other problems, the first-order correction will generally, by construction,
lead to final results correct up to errors of O(ε)2.

Thus in this nonlinear model the perturbative corrections to the energy always have the
same n dependence as that for the unperturbed energies. Therefore, one may interpret the
analogous results for equation (2) as due in some rough sense to higher derivative terms,
higher than the second-order kinetic energy terms like (41). This is indeed what is implied by
a formal expansion of (2), but as we discussed in sections 2 and 4 that formal expansion is in
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general singular and the actual result depends acutely on whether the unperturbed states do or
do not have nodes.

6. Conclusion

Our main result is

δE = h̄2|L|π
6m

√
η(1 − η)(1 − 4η)

N∑
p=1

C2
np + O(L/a)2, (44)

which gives the leading correction, due to the nonlinearity (2), to the energy eigenvalues of
the usual (1 + 1)-dimensional linear Schrodinger equation for cases where the unperturbed
states have nodes. The correction is proportional to |L|/a, hence it is non-analytic and an
enhancement over the correction for states without nodes for which δE ∝ L2. The dependence
of δE on the external potential is only through the Cnp coefficients defined in subsection 4.2.

From (44), we see that independent of the external potential, V (x), the leading energy
correction to states with nodes vanishes at η = 1/4. The existence of such a universal critical
point is quite unexpected as neither the equations of motion nor the full expression (7) indicate
such a special point.

As equation (44) shows, δE < 0 for η > 1/4, being positive for smaller η. Since η is a
free parameter in the nonlinear equation (1), it means that there is a qualitative difference in
the properties of that equation for η small or large. It is also interesting to note from (44) that
the expression is real precisely in the range 0 < η < 1, which is exactly the explicit condition
on η we started with. Since for η → 0 one formally has the linear theory, the square-root
factor again emphasizes, in addition to the |L| term, the non-analytic character of (44).

For the usual linear Schrodinger equation in one space dimension, states with nodes are
the excited states of a system although in some cases, such as that for the infinite well, the
ground state also has nodes. For states without nodes, which are typically ground states, such
as for the SHO, the leading energy corrections are of order L2 and given by a simple expansion
of (7). Thus at η = 1/4 all the states of system, with or without nodes, have δE ∝ L2.

For higher dimensions, the qualitative properties are similar to the one-dimensional case.
That is, nodeless states get δE ∝ L2 while states with nodes in general have δE ∝ L. We
saw an exception in the hydrogen atom example where some excited states with nodes had
δE ∝ L2 because the potential singularities were integrable.

Let us now discuss the validity of perturbation theory for the infinite well and SHO, where
δE increases with n, the principal quantum number, faster than the unperturbed states. For
example, in the infinite well case we found δE ∝ |L|n3/a so that even if |L|/a 	 1, at
large n the correction δE would no longer be small. This indicates a breakdown of first-order
perturbation theory for large n states, requiring one to go to higher orders. Presumably, if L/a

is small, the net perturbative correction should be small for all n, so one expects the higher
order corrections to sum to a reasonable expression. A simple Pade resummation suggests
δE ∝ n2/(1 + bn) for the infinite well at η = 1/2, where b > 0 is some constant.

Finally, we discuss some physical implications of our result if the nonlinearity (2) is a
fundamental or effective representation of potential new physics at short distances as suggested
in [5]. For a particle in a large box, we may use the infinite well result, generalized via (22) to
three independent dimensions, to see that for η > 1/4 high energy states have their energies
lowered, that is the nonlinearity acts to moderate high energy divergences. One reaches the
same conclusion from the SHO results if one thinks of ordinary free-quantum-field theory
modes as SHO states.
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Thus nonlinearity (2), applied here heuristically to field theory, suggests that the usual high
energy divergences of quantum-field theory might be moderated, if not absolutely eliminated.
Now in [3, 5], it was suggested that the nonlinearity (2) might be linked to gravity simply
by requiring L to be a universal length scale. Taken together, this then suggests that gravity
might moderate ultraviolet divergences of field theory. Interestingly, the suggestion that
gravity might regulate ultraviolet divergences has been made several times in the past through
different reasoning within the context of usual linear quantum theory; see for example [14]
and references therein.

However, the above moderation works only for η > 1/4, where we have δE < 0 for
excited states. What if in reality one has η < 1/4? Then δE > 0, and this means that we are
quite possibly underestimating the amount of energy in quantum systems. One wonders if this
might be relevant for the dark energy/matter problem in cosmology.

So it appears that knowing the physically relevant value of η is quite important for
potential phenomenological applications of the nonlinear equation. Perhaps η could be fixed
theoretically through a renormalization group study of a discretized version of the nonlinear
equation (2). In this regard, the naturally induced discretization noted in [9] might be useful.

Appendix A. Infinite well revisited

For the infinite well, we may evaluate δE (34) explicitly since the Cnp for these case are easily
obtained from the wavefunctions (11)

Cnp =
√

2

a

nπ

a
(−1)p, 0 < p � n. (A.1)

Thus the dimensionless energy shift is

δẼ = a2|L|
2π2η4

n∑
p=1

[
2

a

(nπ

a

)2
]

J (η) (A.2)

= |L|
a

n3 J (η)

η4
. (A.3)

Formula is also valid for the ground state, n = 1, because the corresponding wavefunction
vanishes at the two end points, each of which contributes the equivalent of half of one regular
node as can be seen by reviewing the derivation of (29) above. We therefore now have
an understanding of the intriguing n3 behaviour seen numerically in section 3: each C2

np

contributes an identical n2 piece to the sum over n terms.
We find at η = 1/2,

δẼn = |L|
a

16n3J (1/2) (A.4)

= −1.05
|L|
a

n3, (A.5)

in good agreement with our numerical study of the infinite well in section 3 which indicated
an average value of 1.03 for the numerical factor.

For other potentials, an explicit evaluation of the sum in (29) does not appear feasible as
the coefficients in general are very complicated functions of n and p that are rarely known in
a closed form. However, an asymptotic or numerical evaluation of

∑
C2

np might be possible
if an explicit dependence on n is required. We illustrate this for the SHO in the following
appendix.
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Appendix B. Semi-analytical analysis of SHO energy shifts

Recall that our analytical estimates of the energy shifts for the excited states gave

δE = h̄2|L|
4mη4

J (η)

N∑
p=1

C2
np + O(L2).

For the SHO, we obtain Cnp from the wavefunctions

ψn(z) = Nn(πa2)−1/4Hn(z) exp(−z2/2),

where z = x/a, Nn = 1/
√

2nn!, and Hn(z) are the nth order Hermite polynomials. Observe
that the wavefunction vanishes only when the Hermite polynomial is zero.

What is required is the Taylor expansion of the wavefunction about the nodes. At the
nodes

Hn

(
zn
p

) = 0 for p = 1, 2, . . . , n, (B.1)

where zn
p refers to the pth root of Hn(z). Therefore, near a root we have, to leading order,

ψn(z) ≈ ψn

(
zn
p

)
+

dψn

dz

(
zn
p

)(
z − zn

p

)
= dψn

dz

(
zn
p

)(
z − zn

p

)
.

Reverting to x, one obtains

Cnp = dψn

dx

(
zn
p

) = 1

a

(
Nn(πa2)−1/4H ′

n

(
zn
p

)
exp

[−(
zn
p

)2/
2
])

. (B.2)

Using the identity

Hn+1(x) + H ′
n(x) = 2xHn(x),

then gives

H ′
n(z

n
p) = −Hn+1

(
zn
p

)
. (B.3)

Finally,

C2
np = 1

a3

1√
π

1

2nn!

[
Hn+1

(
zn
p

)]2
exp

(−(
zn
p

)2)
. (B.4)

We evaluated the sum of these C2
np through a numerical computation of the roots and sums

of the Hermite polynomials. Since the ‘a’ behaviour is already explicit, we examined the n
dependence by calculating

∑
a3C2

np from n = 1 to n = 23. Furthermore, at η = 1/2:

δẼ = a2

4

|L|
η4

(∑
C2

np

)
J (η = 1/2) (B.5)

= −0.27
|L|
a

n1.40. (B.6)

This result is in good agreement with the purely numerical one quoted in section 3 (which was
actually for relatively low values of a).
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